
Restaurant Search with Predictive Multispace Queries

Alexei YATSKOV
Keio University

Graduate School of Media and Governance
5322 Endo, Fujisawa

Kanagawa, Japan, 252-8520
alex@yatskov.com

Yasushi KIYOKI
Keio University

Graduate School of Media and Governance
5322 Endo, Fujisawa

Kanagawa, Japan, 252-8520
kiyoki@sfc.keio.ac.jp

ABSTRACT
This paper describes a web-based search application used
for locating restaurants in a multidimensional content space
via interactive space visualization. The primary goal of our
research is to reduce the cognitive complexity of query selec-
tion, as well as to help the user avoid one of the common pit-
falls of traditional search mechanisms: retrieving too many
or too few results. Our method approaches this problem by
continuously staying one step ahead of the user, constructing
a graphical output to summarize how further query adjust-
ments will impact subsequent search results. In actively pre-
computing queries ahead of the user we help them avoid the
trial-and-error search process often associated with trying to
find something in an unfamiliar, opaque database. We com-
bine our visual search method with a profile-based knowl-
edge system which helps users find restaurants accessed by
people with similar interests.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
Interfaces

Keywords
semantic search, restaurant search, visualization, forecast-
ing, multidimensional

1. INTRODUCTION
Finding relevant results in a sea of information that we

have come to refer to as big data is an ongoing challenge
for users. When performing any kind of search, it is fre-
quently the case that the number of results retrieved falls
at one of the polar ends of the spectrum — none or sim-
ply too many to count, resulting in information overload[5].
Frustrated users, lacking context regarding the content and
distribution of data, are often left spending their valuable
time attempting to locate desirable results by trial and er-
ror. As an increasing number of businesses and services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS ’15, December 11-13, 2015, Brussels, Belgium
c⃝ 2015 ACM. ISBN 978-1-4503-3491-4/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2837185.2837193

make their databases available and searchable online, the
ability to obtain sought-after results becomes all the more
critical.

Our research views these difficulties as being a direct con-
sequence of the user’s lack of familiarity with the search
space. While many types of search operations can be read-
ily accomplished if one has specific, pre-existing knowledge
of the dataset they are querying, it is not feasible to expect
this level of knowledge from everyone. For this reason, we
see the ability to preemptively familiarize users with an ab-
stract overview of the database contents to be an important
feature of a search system. In order to make the best use of
the user’s attention and to minimize the quantity of infor-
mation they would have to process, we focused on building
a highly visual, interactive, and intuitive search space vi-
sualization system. In addition to being able to visually
designate the search query and inspect the graphical search
output, we felt that it was important to provide a mechanism
for guiding users towards results which would be of possi-
ble interest to them. When performing search queries in the
real world, people unknowingly obtain contextual hints from
the behavior of individuals around them[2]. This can be ex-
emplified by people lining up to buy a product or crowding
around a tasty restaurant. This feedback is not available
online — users performing similar actions are never made
aware of each other’s presence, and cannot leverage each
other’s knowledge in decision making. In order to bring this
property of the physical world into cyberspace, we designed
a mechanism which allows the user to make decisions which
leverage the group knowledge of similar individuals.

In order to demonstrate the advantages of our approach,
we constructed a new application which allows its users to
locate restaurants in a semantic space. This field was chosen
for our research as forming a restaurant query is a task that
often requires the user to make decisions about what criteria
are important to him or her, often making compromises in
the process (how far do I want to walk and pay for a tasty
meal?). Our test data consists of over a thousand restaurant
reviews from Yokohama, Japan, and introduces contextual
properties such as accessibility and distance in addition to
traditional ratings based on categories like value, taste, etc.
We used this data set to construct a multi-dimensional or-
thogonal vector space which we allow to the user to navigate
using a purpose-built web-based graphical interface. When
executing a search query, the user transmits six key param-
eters, alongside profile information, which is then used to
compute the search output. The search engine, in addition
to outputting the results corresponding to the user query,

pre-computes numerous variations on the inputted parame-
ters in order to present a forecast visualization that the user
may leverage when making adjustments to their query.
Effectively visualizing data within spaces of high dimen-

sionality is an area that presents many challenges to com-
puter scientists[1]. Once we cross over the threshold of the
familiar three dimensions, we are forced to employ increas-
ingly abstract forms (colors, shapes, etc.) to convey the
concept of additional dimensionality. While these methods
indeed make it possible to output a graphical representation
of a fixed number of dimensions, the resulting visualizations
may be difficult to comprehend to the untrained user. The
problem becomes even more complex when we must visual-
ize arbitrary dimensionality in an easy to understand man-
ner. Our research solves these problems by presenting to
the user a limited dimensional profile in favor of full space
visualization.
In this paper we will introduce the restaurant search sys-

tem prototype that we have built to demonstrate our tech-
nology, illustrating the distinct scenarios in which forecast
visualization and dimensional profiling enable users to con-
struct queries which lead to highly desirable results. We
will discuss the performance characteristics and limitations
of our approach, presenting ideas we have on possible future
improvements to the system.

2. RESEARCH BACKGROUND
Computer science research into search systems tradition-

ally has the tendency to focus on improving the performance
of server software, with less interest shown towards improv-
ing ways of expressing results to the user; perhaps this is
why search engines for services ranging from online shop-
ping to restaurant selection are still primarily text-based.
While there has been much interesting research conducted[7,
6, 3] into building multi-dimensional content representation
schemes and new visualization systems, there has not been
significant mainstream adoption. This may be in part due to
the fact that building effective visualization systems to rep-
resent multidimensional content spaces is a challenging task
with many usability considerations[9]; after all, the human
perception system was designed for interacting with physi-
cal objects in the real world and not for grasping abstract
objects and concepts[1].
We see the field of restaurant search to be an area where

it is very natural to want to store restaurant information
in a multidimensional space, while exposing an interactive
query interface which enables new content discovery for our
system’s users. As prior research shows that there is value in
developing cooperative features[2], we wanted to investigate
the idea of multidimensional search for not only locating
restaurants directly but also seeking out users with simi-
lar interests and leveraging their knowledge to improve the
efficiency of the query creation process.
Our method’s design was influenced by the work done

on the Mathematical Model of Meaning [4]. The original re-
search consisted of an image search system which used key-
words to position content in a multidimensional space. The
keywords in turn, were described as vectors composed of core
features, a set of descriptors making up the axes of the con-
tent space. The idea of forming queries based on intent as
opposed to forcing the user to input specific parameters was
attractive as a direction for our research; restaurant search
is an example of an activity where users must make frequent

trade-offs and compromises based on numerous physical and
informational factors, the combinations of which cannot be
easily be described by words alone.

3. SYSTEM ORGANIZATION
Our system was developed as a server-client architecture,

with the web front-end built as an HTML5 web application
which utilizes SVG for visualizing results; the back-end was
written Go, using MySQL as the underlying data storage
mechanism. The client software can be used from nearly
all operating system for which a modern web browser is
available; GPS-enabled devices are able to take advantage of
the geo-physcal search functionality. The server maintains
a store of restaurant data which web clients can query via
AJAX. Clients keep a persistent copy of user profile data
in the browser local storage. The system does not employ a
user database on the server of any kind, and as such regis-
tration is not needed.

3.1 Restaurant Data
Our research focuses on building a predictive search sys-

tem which enables the user to locate desirable restaurants
represented in a content space via a series of parameters.
The data items stored in the system are described by six
key vectors (from here on out referred to as features) each
representing a specific meaning about a restaurant. Feature
vectors are normalized to values between -1 and +1 and
make up the axes of the six-dimensional restaurant search
space. Positive feature values correspond to varying degrees
of agreement with the associated meaning and negative val-
ues indicate disagreement; null values represent irrelevance.

The key features and the meanings they represent are as
follows:

accessible
ease of access via public railway

accommodating
level of customer service and flexibility

affordable
reasonableness of the overall price point

atmospheric
the appearance and mood of the environment

delicious
the overall quality of the food served

nearby
the proximity of the restaurant to the user

3.2 Data Acquisition
In order to obtain the base review data for the features

corresponding to accommodating, affordable, atmospheric,
and delicious, we developed a custom data mining ap-
plication to harvest reviews from a travel-related website,
TripAdvisor. TripAdvisor is a traditional text-based search
engine which maintains a database of user generated travel-
related content and contains collections of restaurant reviews
organized by region; we focused our scope on the businesses
located in the city of Yokohama, Japan.

Figure 1: The user executes queries and views search forecast information through an interactive web appli-
cation. They are presented with sliders which they can use to mutate the values of the six key features, the
components of which are individually described in Figure 3. The left-hand side side of the window contains
controls which users can interact with to operate the search and visualization systems.

3.3 Data Normalization
The raw data we obtained from TripAdvisor, after being

stripped of unusable data (closed restaurants, entries with-
out ratings) had to be normalized to work with our system.
The data obtained was based on a rating system of 0 to 5
stars; each category was normalized to a -1 to +1 scale, thus
making it consistent with the other features in the database.
Every restaurant entry contained a street address, and as
part of the conversion process, a latitude/longitude pair was
computed for every location via the Google Geocoding API.

3.4 Data Precomputation
Computing accessibility for each restaurant location re-

quired us to obtain the distance from each restaurant to the
nearest railway station (for the purposes of our research we
assume that the user will be traveling on JR trains). We used
a publicly available list of station names in Japan to locate
and compute latitude/longitude pairs for all stations. We
then applied the Haversine Formula[10] to compute great-
circle distances between each restaurant and the closest sta-
tion. It should be pointed out that this distance is only
an estimate and does not take into consideration natural
and man-made obstacles which can make the actual travel
distances be greater. Actual route calculation (such as the
turn-by-turn navigation provided by Google Maps), while
undoubtedly providing accurate distance estimates, would
lead to a significant increase in computational load on the
server and as such was not utilized in our application.

4. USER INTERACTION
The user interacts with the search system through a dy-

namic web interface. He or she is presented with a screen
that displays to them the six key features, represented as

vertical sliders, shown in Figure 1. The sliders are initially
centered on a starting value of zero but have a range of mo-
tion spanning -1 to +1, The user can interact with the slid-
ers by clicking on them, thereby specifying the value of the
corresponding feature. All of the features, when combined
correspond to a point in six-dimensional space which is used
as a starting point for locating nearby results in semantic
space. Every time a feature value is changed, a query is
sent to the server and executed. Results, along with predic-
tive information for future queries are returned to the client
which displays them to the user. A control panel allowing
the setting of additional search parameters is provided along
the left side of the interface.

4.1 User Profile Data
Users of our system can use the built-in profile editor to in-

put relevant information about themselves which is used to
build a compatibility profile. The editor interface presents
the user with a series of questions which he or she can
then reply to from the multiple-choice answers“Agree”,“Dis-
agree” or “Neither” using a modal dialog as shown in Fig-
ure 2. The questions presented are the same for all users,
with new entries being addable by anyone at any time. For
example, someone who drives a car might add the question
“I require parking”; someone who enjoys spicy food might
write “I like spicy food”. All of the answers start out initial-
ized to the default value of “Neither”, and thus do not have
any influence in compatibility profile calculation. Users can
answer as many or as few questions as they desire, depend-
ing on relevance to their search query. By answering these
questions, users are grouped into similar categories, which
in turn are used as basis for helping them discover what kind
of restaurants people similar to them enjoy[8].

Figure 2: The user interface of the profile editor
displayed in a dialog; users can answer as many
or as few of the questions presented to help them
to find restaurants accessed by similar individuals.
New questions can be contributed by anyone and
unreferenced question data can be freely deleted by
users.

4.2 Forecast Visualization
One of the key features of our technology, forecast visu-

alization allows the user to see how changes to their search
query will impact the results before they take any action.
While visualizing the contents of a multidimensional space
past the first three dimensions is difficult to do in a clear,
easy to understand way, our system accomplishes this by dis-
playing a dimensional profile. The dimensional profile can be
described as a list of samples taken at set intervals across the
range of the feature, with information about the query re-
sults at that each step recorded in the process. We use linear
interpolation to create an SVG gradient which serves to vi-
sually forecast the changes in results brought about by user
modification of a feature value. The color of the gradient
ranges from white to black, corresponding to low and high
values respectively, thus representing varying levels of data
pressure. For our research, we apply forecast visualization to
two different result attributes density and compatibility;
the user can alternate between these visualization modes by
selecting the corresponding option in a drop-down list. The
major components of the feature visualization interface are
identified in Figure 3.

4.2.1 Density Visualization
The density visualization mode allows the user to observe

variation in the number of results returned in response to
changes to feature values. This functionality allows the
user to fine-tune the query to get a desirable number of
matches without having to resort to trial-and-error. If the
returned set of restaurants is unmanageably large, the user
can tighten his or her search criteria to better correspond
to their ideal restaurant by increasing the minimum score
threshold. On the other hand, if there are not enough op-
tions to select from, the user can easily decide on a strategy
for loosening their requirements to get more matches (either
reducing the minimum score threshold or moving feature
sliders to areas with higher data pressure). Other benefits
of this visualization technology include the ability to see
trends and correlations in the data. In the case of the data

Figure 3: Illustration of the major components of
the widget used for feature value selection and fore-
cast visualization. The user can pick a value for the
current feature by clicking anywhere on the slider,
which represents a possible range of +1 (at the top)
to -1 (at the bottom), with 0 in the middle. The cur-
rent search mode can be toggled between importance
and similarity by clicking the corresponding under-
lined text.

set that we are using from TripAdvisor, for example, we no-
ticed high review densities at the upper and lower end of
feature value ranges, corresponding to highly polarized re-
views. We assume that this may be attributed to the fact
that the majority people do not take the time to write about
their experience at a restaurant unless it was a very good
or bad one. Being able to see inherent biases in the reviews
was one of the things not possible to do with the original
TripAdvisor text-only search interface to this data.

4.2.2 Compatibility Visualization
When operating in this mode, the forecast visualizer dis-

plays the compatibility density for each feature. This func-
tion enables the user to see the estimated quality of results,
calculated based on how many users with a similar profile
have accessed the reviews in question. For example, the user
might realize that by changing the value of the “nearby” pa-
rameter to expand their search to restaurants further away
from their position, they may be able to find a location that
is highly popular amongst people with similar profiles. The
advantage of this method of forecasting is that users who
may not have a clear picture of what kind of restaurant they
are looking for can leverage the system’s group knowledge to
find suitable locations, while at the same time maintaining
control of the search parameters used for the query.

4.3 Result Output
Results are output in a tabular format, with the follow-

ing columns: name, distance to user, closest station,
distance to station, compatibility, score, and access
count. The user is able to sort the output in ascending or
descending order by clicking on a column; clicking on the
restaurant name allows the user to learn additional infor-
mation about the business by visiting its TripAdvisor page.
They can see how many results are currently displayed and
compare this number to the quantity that was matched by
their query. When the user opts to visit the review page
corresponding to one of the search results, it is opened in a
new browser window. The still-running search application
executes an AJAX request to the search server, transmit-
ting the user’s profile information to be stored as an access
request for purposes of future compatibility calculation.

4.4 Customization
Our system features several options that the users can ad-

just in order to modify the search query behavior and visual-
izations. Unless otherwise noted, changing any of these set-
tings will immediately trigger the execution of a new query
and cause new results to be displayed. The behavior of these
customizations is described from the user’s perspective; a
technical explanation will be provided later in the Search
Mechanism section.

4.4.1 Walking Distance
In processing the value of the accessibility feature, our

system needs to know the maximum distance that the person
executing the query is willing to walk from a train station
to a restaurant. This parameter allows the user to specify a
preferred distance in kilometers; a value of 1.0 kilometer is
provided as the default.

4.4.2 Minimum Score
When performing their search, the user can specify the

Figure 4: Comparison of the visual differences be-
tween using four different resolution settings to rep-
resent an identical content space. Our system uti-
lizes linear color interpolation to fill in the gaps be-
tween samples; lack of data leads to more interpola-
tion, visualized as smoother gradients. Higher res-
olution allows the system to build a more sharply
defined picture of the content space at the expense
of additional computation.

minimum score threshold that results must obtain to be dis-
played. Higher scores translate to higher correlation to the
user’s query, in exchange for a smaller number of results dis-
played. This parameter can be freely set to any value, but in
our experiments, values in the range of 0.0 to 2.0 appeared
to be optimal. The parameter is initially set to a value of
0.25, allowing for slightly loose queries by default.

4.4.3 Resolution
This parameter determines the sample frequency used in

building the forecast visualization data for each feature. Lower
resolutions translate to faster queries but higher values im-
prove accuracy. The default setting provides twenty samples
for every feature, which in our usage was found to be ade-
quate for most searches. A graphical comparison of forecast
visualizations rendered at 5, 10, 20, and 40 samples is illus-
trated in Figure 4.

4.4.4 Maximum Results
In order to avoid an unmanageably large number results

being displayed in the client in the case of a overly loose
query, our system allows the user to set a cap on the max-
imum number of results returned. The result set is sorted
before being trimmed on the server, ensuring that only the
results with the lowest scores are hidden from the client.

4.4.5 Display Type
This toggle allows the user to switch between the den-

sity and compatibility visualization modes. As the forecast
data required for displaying both visualizations is computed
whenever a query is executed, changing this setting does
not require any additional server processing. By default, we

display the result density to the user.

4.4.6 Local vs. Global Scale
Our system can generate the forecast visualization in ei-

ther local or global scale mode. When in local mode,
we use the local minimum and maximum values to repre-
sent white and black on the gradient, respectively. In global
mode, the minimum and maximum values across all of the
features are used for gradient color calculation. Local scale
mode is useful for being able see changes that occur from
modifying a given feature value, no matter how small their
contribution is to the overall query result. The global scale
mode, on the other hand, is more meaningful for users decid-
ing what features have the greatest influence on the search
results. This property is particularly helpful when we are
faced with too few or too many results returned by a query
— we can quickly find and modify the “bottleneck” feature
that is leading to an undesirable number of restaurants be-
ing matched. As the gradients created when using the global
scale correspond better to the number of returned results, it
is the default setting.

4.4.7 Importance vs. Similarity
Every feature slider contains a toggle that specifies how

the feature should be interpreted by the search system. The
importance mode conveys the value of a feature’s meaning
to the user. For example, positive values for the delicious
feature imply varying degrees of importance in matching
restaurants with high quality food; in contrast, negative val-
ues correspond to intent to find locations with food that has
been rated to be poor. The similarity mode operates dif-
ferently in that instead of describing how much emphasis
a feature should have in calculating a restaurant score, it
provides a specific value which should be searched for. This
difference is easiest to illustrate when examining how the
two modes treat the feature value of zero. In importance
mode, a value of zero implies that the given feature is not
important to the user and as a result, it does not factor in
during the computation of a restaurant’s score. When in
similarity mode, selecting zero would imply the user’s in-
tent of finding restaurants with an average rating of zero for
that particular feature. As it can be more intuitive to think
about features as being relative to each other rather than
absolute values, all of the features are set to the importance
mode by default.

4.4.8 Result Brackets
When restaurant results are displayed to the user, we ren-

der brackets to express the range of values matched for every
single feature within three standard deviations. Doing so
allows the user to visually see the distribution of the result
set, and provides awareness to how well each feature was
matched in the query, allowing him or her to judge the over-
all quality of the search. Furthermore, the bracket size is a
good indicator of the “tightness” of the search; loose bounds
usually imply that we can get better results by increasing
the minimum score value.

5. SEARCH MECHANISM
When the user directs the web client to perform a search,

an AJAX request is sent to the server which then processes
the query. The request consists of not only the feature val-
ues and search preferences, but the user’s physical position

and profile data as well. Positional information is obtained
through the geolocation API available in modern browsers.
If this information is not available (browser incompatibility
or the user refuses to provide it), the query can still be ex-
ecuted without it (albeit the nearby feature cannot be cal-
culated). The query is processed in a series of steps, leading
to the calculation of a score for each restaurant. Restau-
rants with scores higher than the user-assigned minimum
threshold are returned to the clients as results.

5.1 Dynamic Feature Computation
While most of the features used in queries are stored as

static data in the database, the nearby and accessible fea-
tures depend on search options and the user’s geographic
position and thus must be computed whenever the user per-
forms a search. The dynamically computed features are
treated identically to the static ones stored in the database
during the restaurant score calculation step.

5.1.1 Calculating the nearby feature
Given that we have the latitude and longitude data pro-

vided to us in the search query, it is possible to compute the
Haversine Distance[10] between the user and the restaurant
locations stored in the database. As the resulting distance is
a measure of length, we must normalize this value in order
to be able to handle it as a feature within our search system.
The normalization function for any given restaurant can be
expressed as

nearby(duser) = −
(
duser − dclose
dfar − dclose

− 0.5

)
∗ 2

where duser is the distance to the user, dclose is the distance
to the closest restaurant, and dfar is the distance to the
farthest restaurant from the user. This function effectively
treats the distance to the closest restaurant as the definition
of “nearby”, and considers the restaurant farthest away to
be the opposite of this feature’s meaning.

5.1.2 Calculating the accessible feature
For our purposes, the distance from the nearest station to

a restaurant is the factor used for determining the value of
the accessible feature. When executing the search query,
the user specifies the maximum distance that they are willing
to walk; we use a normalization function to obtain a value
for this feature from distance for a given station expressed
as

accessible(dstation) = max

(
−1,min

(
1, 1− dstation

dwalk

))
where dstation is the distance to the closest station and dwalk

is the maximum distance that the user is comfortable walk-
ing to their destination. When the distance to the station is
the maximum distance, the above function equates to zero;
it is an edge case where the station is neither particularly
accessible nor inaccessible. Shorter distances compute to
positive accessibility values and longer distances to negative
ones.

5.2 Calculating Compatibility
Features are not the only data which must be processed for

every query; profile data sent by the client must be processed
and compatibility scores must be obtained for the restau-
rants being searched. This step requires several queries to

be executed and is the most performance intensive step in
the search process.
When requesting a search query, the client transmits the

user’s profile data, represented as a series of key-value pairs
corresponding to the question and answer data that they op-
tionally completed before starting search. The profile keys
correspond to question identifiers, represented by a unique
number; the values are answers represented by the set con-
sisting of -1, 0, or +1, corresponding to the replies “Dis-
agree”, “Neither”, and “Agree” respectively. For each restau-
rant that is processed in our query, we read the access his-
tory, and compute a compatibility score based on the dif-
ference between the current user profile and the ones stored
from previous searches. This is accomplished with the func-
tion illustrated in the pseudocode below:

func compatibility(features1, features2) {
result = 0

for name, value1 in features1 {
if name in features2 {

result += value1 * features2[name]
}

}

return result
}

From the above code we can see that unanswered ques-
tions, defaulting to the baseline “Neither” answer do not
have any influence on the compatibility score. The value
computed for compatibility is in fact only changed when the
answer from the user’s profile agrees or disagrees with the
one in the restaurant’s access history. This approach to score
calculation, combined with that all the answers to the pro-
file questions are initialized to “Neither” permits the user to
answer only the questions that they see as relevant to their
search experience, without their results getting skewed every
time a new profile question is registered in the system. Upon
performing this computation between the user’s profile and
all of the items in the access history, we can use the average
score as the final compatibility value for the restaurant.

5.3 Score Calculation
To determine whether or not a given restaurant should be

returned as a result to the user, our system computes a score
which is then compared to the minimum threshold setting.
The calculation is similar to the compatibility computation
in that we compare two feature sets to determine the final
score. As described earlier, the features consist of static
and dynamic data, numerically representing a restaurant’s
properties such as delicious and accessible.
Each feature’s contribution to the restaurant’s score de-

pends on it’s value and the mode setting selected by the user.
As mentioned earlier, similarity is most helpful in finding
restaurants closely matching the exact parameters specified
by the user; importance is used to designate the significance
of each feature during score computation. The behavior of
the scoring function follows the pseudocode which is shown
below:

func score(features1, features2, modes) {
result = 0

for name, value1 in features1 {
value2 = 0
if name in features2 {

value2 = features2[name]
}

if modes[name] == importance {
result += value1 * value2

}
elseif modes[name] == similarity {

result += 1 - abs(value1 - value2)
}

}

return result
}

5.4 Forecasting
Our system computes forecast data by sampling the pos-

sible -1 to +1 value range of each feature at intervals of
2/resolution, while keeping the values of the other features
constant. The number of overall samples taken can therefore
be described as features ∗ resolution. This method allows
us to generate predictive information which can be used to
build a visualization illustrating how modifying the value of
any given feature will impact the search results. This ap-
proach is valid for search spaces of arbitrary dimensionality
but for the sake of simplicity we present a visual example
of forecast computation for a two-dimensional space in Fig-
ure 5. The black areas correspond to matched content and
red and blue colors represent two distinct features, or di-
mensions. When calculating the forecast data for the blue
feature we can observe how changing its value impacts the
search results while keeping the value for the red feature
constant. Computing data for the red feature works nearly
identically with the exception that it is now the blue feature
remains constant while we mutate the red feature. This can
be more intuitively described as shadowing content wherever
it is detected in a sample. This one-dimensional slice can in-
clude numerical information describing intersected content;
for our system we focused on recording the number of restau-
rants at each sample (density) and average compatibility.

6. PERFORMANCE
The work performed by our system can be divided into two

categories: searching and forecasting. Both operations can
be readily optimized with parallelized execution; we heav-
ily utilize goroutines, a technology similar to green threads
to improve query throughput. The overall processing time
varies from system to system, but in general searches com-
plete in under 100 milliseconds when executed on the mid-
range consumer hardware used for testing. We believe that
temporary, per-user profile and location caching on the server
could be a good way to attain significant performance im-
provements, but we have not yet conducted such tests as of
the writing of this paper.

6.1 Searching
Our system’s query execution time grows linearly with the

addition of new restaurants to the data store. The search
step consists of retrieving restaurant and access data from
the database, and computing compatibility and accessibility
for every record. While the actual calculations do not take

Figure 5: Visual representation of feature shadowing
in a two dimensional content space. Black blocks
represent content matches and red and blue lines
correspond to samples taken at regular intervals in
order to build prediction data describing how fea-
ture value changes modify the overall search result.

any significant amount of time in practice, the time required
for repeated database operations add up to make this the
slowest step in query execution.

6.2 Forecasting
Search forecasting, while requiring significant arithmetic

computation, is easily parallelizable, with the execution time
growing at a linear rate with the introduction of additional
features. The resolution parameter specified by the user
has a direct impact on the time required to complete a query
and should be restricted to a reasonable upper bound to
conserve server system resources.

7. OTHER APPLICATIONS
The presented technology, while for the purposes of our

research centered on the area of restaurant search, can be
readily adapted to work in other fields. Our method of using
interactive visualization to proactively help the user reduce
the amount of time lost to trial-and-error in query selec-
tion can be incorporated into other systems which perform
search in a multidimensional space. Possible use cases in-
clude finding and displaying potentially dangerous chemical
combinations in areas ranging from environmental study to
pharmaceutical science. Other scenarios include the inter-
pretation of trends and interactions in semantic computing;
the text-only output of today’s systems is particularly lim-
ited in situations where the developer must convey to the
user the relevance of data expressed in “fuzzy” search re-
sults. Our technology does not impose arbitrary restrictions
on the dimensionality of data and, as we have shown, can
make use of dynamic parameters as query input, making its
use possible across a range of applications.

8. CONCLUSION
In this paper we introduced a forecast-based search method

and explored how it can help users discover restaurants in an
unfamiliar multi-dimensional content space. We discussed
how our interactive visualization technology can help users
improve their query, narrowing down the number of returned
results to a set best corresponding to their search criteria.
To further mitigate the difficulties associated with searching
an unknown dataset, we introduced the concept of using pro-
file data to passively build group knowledge, thereby aiding
users in finding restaurants accessed by people with similar
interests to that of their own. To relate the applicability of
our system to the real world we demonstrated how data from
a traditional restaurant review website, TripAdvisor could
be systematically harvested, supplemented with geophysi-
cal parameters, and converted for use within our semantic
database.

Our technology’s primary limitation is that it must be
used for data sets which can be readily represented in a
multi-dimensional space. We cannot, for example, mean-
ingfully support search by restaurant name, which by itself
has no inherent dimensionality on its own and thus cannot
be used in our calculations. Another area for future im-
provement is the basis for recording the user’s interest in
a restaurant for the purpose of compatibility calculation.
While accessing a review site in of itself shows a desire to
learn more about the location, upon obtaining more infor-
mation, the user may lose interest. We can mitigate this
problem by displaying restaurant information in-line with
results, requiring the user to press a button to obtain a crit-
ical piece of information, such as the street address. By
doing so, we can obtain a higher degree of confidence that
the result is indeed of practical interest to the accessing user.

If existing search engines were to transition away from the
traditional, largely text-based search interface and adopt a
proactive, visual approach to query construction such as the
one described in this paper, it would be an important step
in making the Web more discoverable and transparent to
the user. We hope to see more systems taking advantage of
modern web technology to take upon themselves the user’s
burden of trial-and-error search, leading the way to a better
query building experience across many different fields.

9. REFERENCES
[1] G. Grinstein, S. Laskowski, and A. Inselberg. Key

problems and thorny issues in multidimensional
visualization. In Proceedings of the Conference on
Visualization ’98, VIS ’98, pages 505–506, Los
Alamitos, CA, USA, 1998. IEEE Computer Society
Press.

[2] J. K. Hall and Y. Kiyoki. Identifying and propagating
contextually appropriate deep-topics amongst
collaborating web-users. In EJC, pages 146–157, 2013.

[3] D. A. Keim, M. Ankerst, and H.-P. Kriegel. Recursive
pattern: A technique for visualizing very large
amounts of data. In Proceedings of the 6th Conference
on Visualization ’95, VIS ’95, pages 279–,
Washington, DC, USA, 1995. IEEE Computer Society.

[4] Y. Kiyoki, T. Kitagawa, and T. Hayama. A
metadatabase system for semantic image search by a
mathematical model of meaning. SIGMOD Rec.,
23(4):34–41, Dec. 1994.

[5] C. López and R. Farzan. Exploring the mechanisms
behind the assessment of usefulness of restaurant
reviews. In Proceedings of the 7th International
Conference on Communities and Technologies,
C&T ’15, pages 19–27, New York, NY, USA,
2015. ACM.

[6] J. Mothe and T. Dkaki. Interactive multidimensional
document visualization. In Proceedings of the 21st
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’98, pages 363–364, New York, NY, USA, 1998.
ACM.

[7] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A
system for query, analysis, and visualization of
multidimensional databases. Commun. ACM,
51(11):75–84, Nov. 2008.

[8] V. Suresh, S. Roohi, and M. Eirinaki. Aspect-based
opinion mining and recommendationsystem for
restaurant reviews. In Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys ’14,
pages 361–362, New York, NY, USA, 2014. ACM.

[9] E. R. A. Valiati, M. S. Pimenta, and C. M. D. S.
Freitas. A taxonomy of tasks for guiding the
evaluation of multidimensional visualizations. In
Proceedings of the 2006 AVI Workshop on BEyond
Time and Errors: Novel Evaluation Methods for
Information Visualization, BELIV ’06, pages 1–6, New
York, NY, USA, 2006. ACM.

[10] J. Šeděnka and P. Gasti. Privacy-preserving distance
computation and proximity testing on earth, done
right. In Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security,
ASIA CCS ’14, pages 99–110, New York, NY, USA,
2014. ACM.

